onsdag 11 augusti 2021

Monsieur Géloën et al levererar ånyo en ny forskningsrapport

I ett samarbete mellan franska och israeliska forskare har dessa igår 10/8 fått sina studier publicerade i det vetenskapliga organet Atmosphere,en division till det mer kända organet MDPI ,“Molecular Diversity Preservation International”.Det handlar om en miljörapport som i allra högsta grad har aktualitet i dagens allmänna miljökonsekvensresonemang.Forskaren Alain Géloën m kollegor har studerat hur förbränning av biomassa påverkar människa ur ett hälsoperspektiv.Biomassa som ex uppvärmingsmaterial (vedeldning) till hus,men även andra trämaterial som bränns upp i ex de nu så aktuella skogsbränderna runtom i världen.Dessa bränder genererar små små nanopartiklar som vid ogynnsamma förhållanden riskerar att inhaleras av omkringliggande populationer. Skogsbränder med den rök det genererar kan färdas långa sträckor vilket ger förklaring på varför människor på avstånd drabbas av lungproblematik. 
Vedeldning som uppvärmning av hus kanske kommer i annat ljus om husägare medvetandegörs av de risker det medför.

Världshälsoorganisationen WHO uppskattar att 3,8 miljoner människor årligen dör som en konsekvens av dessa nanopartiklar.
Alain Géloën m kollegor visar i denna forskningsrapport hur dessa nanopartiklar komna ur biomassaförbränning påverkar människans lungceller.

The Toxic Effect of Water-Soluble Particulate Pollutants from Biomass Burning on Alveolar Lung Cells

Abstract

In 2018, 3.8 million premature deaths were attributed to exposure to biomass burning nanoparticles from wood combustion. The objective of this study was to investigate and compare the toxic effect of wood-combustion-related biomass burning nanoparticles from three different combustion stages (i.e., flaming, smoldering, and pyrolysis) on alveolar lung cells, by studying cell proliferation, and structural and behavioral parameters. A549 lung epithelial cells were treated with 31, 62, 125, 250, and 500 µg/mL of water-soluble particulate pollutants from wood burning, and measured by means of real-time cell analysis, cell imaging, and phase imaging microscopy. At low concentrations (31 and 62 µg/mL), all three types of wood burning samples exhibited no toxicity. At 125 µg/mL, they caused decreased cell proliferation compared to the control. Exposure to higher concentrations (250 and 500 µg/mL) killed the cells. Cell physical parameters (area, optical volume, eccentricity, perimeter, and optical thickness) and behavioral parameters (migration, motility, and motility speed) did not change in response to exposure to wood burning materials up to a concentration of 125 µg/mL. Exposure to higher concentrations (250 and 500 µg/mL) changed cell perimeter, optical thickness for smoldering and flaming particles, and led to decreased migration, motility, and motility speed of cells. In conclusion, all three of the combustion water-soluble organic pollutants were identified as equally toxic by real-time cell analysis (RTCA) results. The parameters describing cell structure suggest that pyrolysis particles were slightly less toxic than others.

1. Introduction

The World Health Organization (2018) estimates that 3.8 million premature deaths per year are due to exposure to environmental pollution, especially particulate matter (PM). These nanoparticles (NPs) arise from household air pollution, industrial and traffic sources, and wildfires. In fact, around 3 billion people still cook or heat their houses using solid fuels due to economic conditions, and wood is the main fuel used for domestic biomass combustion. While wood is often considered as a renewable fuel, its combustion produces primary nanoparticles more efficiently than oil or natural gas burning systems. As of 2005, domestic biomass combustion was responsible for more than 45% of PM2.5 over Europe. Such particulate pollution causes not only lung-related diseases, such as pneumonia, chronic obstructive pulmonary disease, stroke, lung cancer, and cardiovascular diseases, but also negatively affects cognitive functioning among the elderly.
Under the changing climate and land use change, the frequency of wildfires gradually increased worldwide. Large fires are frequently reported in countries such as Canada and the USA, Australia, Brazil, and Indonesia. These fires can exert impacts ranging from regional to global on climate and air quality, in contrast to household pollution. Global exposure to wood-related aromatic compounds is inevitable. These compounds have a short lifetime in the atmosphere (several hours up to a few days) and they are ubiquitously present in fog and precipitation. In addition, two different subfractions (water-soluble vs. organic-soluble) of wood fuel pyrolysis brown carbon (BrC) were tested and shown to be toxic to epithelial lung cells.
Wood burning can be described by three identified combustion stages: flaming, smoldering, and pyrolysis. Flaming is defined by the burning of wood with flames or complete combustion, while smoldering is the slow and incomplete burning of wood, with low-temperatures, and is flameless. Pyrolysis is an intricate process that is not yet fully understood, but it is the genesis for both flaming and smoldering conditions.
In vitro studies have been performed with lung cell lines, demonstrating that wood-burning biomass NP is toxic, due to the presence of phenolic compounds, organic peroxides, and polycyclic aromatic hydrocarbons (PAH). PAH are considered as human carcinogens, with well-documented mechanisms of action that involve the production of reactive oxygen species (ROS). In addition, in vivo studies were performed to establish which burning condition produces the most toxic outcome, but the results were inconclusive, with different studies highlighting different combustion conditions.
Forest fires are unexpected, and smoke can be transported over large distances. Hence, it is almost impossible not to be exposed to smoke particles and gaseous species. It is critical to understand what the most toxic mechanisms of action of biomass burning particles are, in order to prevent their adverse health effects. Three different but complementary methods were used to determine the cytotoxicity of particles. All three methods are without labelling, and are conducted in real-time. First, real-time cell analysis (RTCA) allows for the monitoring of cell proliferation and viability. It analyzes cell viability using electrical impedance. Second, the quantitative phase microscope Holomonitor produces 3D reconstructive images of cells, and measures the structural and behavioral parameters of cells, such as their area and migration. Third, the multi-mode brightfield microscope Cytation 3 provides images of cells, allowing the visualization of cell division and death. All three, flaming, smoldering and pyrolysis stages, can occur during wood fires. In this study, we focused on their effects on cell proliferation, which is an important feature of the maintenance of epithelia, and on the effects on the cell structure and cell behavior of epithelial lung cells.

2. Materials and Methods (urval)

2.3.2. Quantitative Phase Imaging

Quantitative phase imaging was performed using the Holomonitor M4 digital holographic cytometer (DHC) from Phase Holographic Imaging (PHI, Lund, Sweden). The microscope was placed in a standard 37 °C cell culture incubator with 5% CO2. The microscope measured eight parameters obtained from 3D reconstructed images, every 10 min for 10 h: area, perimeter length, optical thickness, optical volume, eccentricity, migration, motility, and motility speed.

2.4. Statistical Analysis

The figures presented here depict three experiments performed independently. Data are presented as mean values ± SEM for RTCA and Holomonitor (each value represents the average of eight wells). Statistical analysis was performed with Stat View 4.5 software (Abacus Corporation, Baltimore, MD, USA) for Windows; the data were analyzed using one-way ANOVA followed by Fisher’s protected least significance difference (PLSD), post hoc test. Differences were considered to be significant at a probability level of p ≤ 0.05.

3.2. Effects of Water-Soluble Particulate Pollutants from Biomass Burning on A549 Behavioral and Structural Parameters

Cells were monitored with a Holomonitor, a quantitative phase contrast microscopy for non-invasive analysis of cellular events by long-term digital phase imaging, allowing for the quantification of behavioral and structural parameters. The analyses were performed for 10 h, and results are presented as the mean of the last two hours.
 

4. Discussion

The present study is also an opportunity to compare three different methods for cell analysis: RTCA, phase imaging microscopy, and time-lapse microscopy. The three methods provide real-time monitoring of the cells without labelling. Each process has its own advantages and drawbacks. RTCA is based on impedance measurements, which are affected by the surface of electrodes covered by the cells and the adhesion strength of the specific cell line. Cell size is rather constant and homogeneous during cell proliferation. Adhesion strength is a characteristic of the cell line. Under normal conditions, it is not expected to change; however, the possibility that adhesion may be altered by various chemicals cannot be excluded. For this reason, the results obtained from RTCA were cross-checked using phase imaging microscopy (Holomonitor), which measures numerous cell parameters, such as cell volume and mobility, which are normally difficult to measure.

5. Conclusions

Materials extracted from biomass burning particles from three combustion processes did not exhibit differences in toxicity with respect to the cell index of A549 cells, exerting toxic effects on cells at 125, 250, and 500 µg/mL. All three types of water-soluble particulate pollutants from biomass burning caused a decrease in the migration, motility, and motility speed at 250 and 500 µg/mL, with the exception of PWS, which did not cause a decrease in motility for 250 µg/mL, as measured by a Holomonitor for 10 h. Overall, the particles from FWS and SWS were the only ones that affected cell structure by increasing the cell optical thickness (FWS and SWS 500 µg/mL, and decreasing the perimeter length (FWS and SWS 500 µg/mL). Furthermore, the different real-time and label-free methods, used here to study the toxicity of these particles, shared an essential complementarity to properly assert toxicity studies of atmospheric pollutants. Our results demonstrate that a short but intense exposure to water-soluble particulate pollutants from biomass burning may exert long-term, persistent, deleterious effects.

Min kommentar

Dr Alain Géloën har verkligen fått fart på sin HoloMonitorbaserade forskning.Detta var studie nr 2 bara i Augusti månad.Fortsätter han i samma takt får VD Egelberg utnämna honom till Europa-ambassadör för HoloMonitor. 😎
 
Och återigen ser vi att Agilents instrument xCELLigence (RTCA) lirar så bra med HoloMonitor.
Instrumenten verifierar varandras upptäckter vilket för forskare är en viktig parameter för att få sina studier godkända i den benhårda granskning som alltid genomförs.
Jag fick ett mejl med en uppmärksam notering angående gårdagens inlägg om PHI`s nya ÅF i Rumänien, Agilrom.Namnet vibbar ganska tydligt att företaget på nåt sätt har närmare samröre med bjässen Agilent. Agil + rom låter som en filial till Agilent i Rumänien (rom).Kikar vi närmare på Agilrom´s produktinnehåll är merparten/nästan alla Agilentprodukter.De visar 7 videofilmer där 6 är Agilentprodukter.Den 7e är ett test för covid19.
 
Nåväl,undertecknad kan naturligtvis inte nöja mig med detta så jag grävde vidare och tror mig vara ganska säker på att Agilrom är ett Agilentföretag.
Agilents hemsida över var de har försäljningsställen återfinner jag..tadaa..Agilrom i Rumänien.Länk
Att ett Agilentföretag tar in en "främmande" produkt till sin katalog är naturligtvis intressant.
Först tänker undertecknad att detta initiativ är en testballong för Agilent.
Finner forskare i Rumänien möjligheten att köpa både xCELLigence och HoloMonitor i ett paket intressant? Och vilka volymer kan det då handla om? Eftersom det är en testballong i ett litet land knappast känd för sin forskning är förmodligen förväntningarna därefter.Men når försäljning över uppsatt mål har Agilent fått ett kvitto på forskarintresse och därmed....?
De agerar alltså i skymundan redan nu innan ev spekulationer uppstår om samarbete/uppköp osv.
Det så att andra spekulanter (läs bjässar) inte blandar sig i leken innan/OM Agilent aviserar sitt intresse för PHI.
Man ska veta att Agilent är en bjässe av format.De är noterade på New York-börsen med ett börsvärde på hiskeliga 47 501 002 441 USD.

Agilent var ute med köphåven 2018 då man köpte ACEA med sitt instrument xCELLigence.
En affär som slantade 2,2 miljarder Skr.
VD Egelberg gav en kommentar i samband med det uppköpet:

– Likt IncuCyte, förvärvat av Sartorius för drygt ett år sedan, kan xCelligence från ACEA enbart mäta en cellpopulation in sin helhet. HoloMonitor tar cellanalys till nästa nivå genom att göra det möjligt att utan infärgning eller genmanipulation även mäta individuella cellers beteende i en population av levande celler. HoloMonitor kompletterar därför både xCelligence och IncuCyte. Att kunna mäta enskilda celler är viktigt för bl.a. cancerforskare eftersom forskningen idag vet att enbart ett fåtal tumörceller har förmågan att sprida cancern. Cancer karakteriseras av två saker: tillväxt och spridning. HoloMonitor gör det möjligt att samtidigt och utan infärgning mäta båda egenskaperna på cellnivå. "
 
Några bestämda slutsatser av att Agilent tar in HoloMonitor i sitt sortiment i Rumänien ska vi inte dra.
Däremot kan vi spekulera om motiv och anledning.Undertecknad ser en pusselbit som passar bra in i ett större perspektiv. xCELLigence + HoloMonitor är som sagt mkt bra kompisar.

                                       Mvh the99
 
Som service till alla ev HoloMonitornyfikna forskare : PHIAB Webshop
 

Inga kommentarer:

Skicka en kommentar