tisdag 23 maj 2017

Breaking News

Tidskriften Cytometry gör en specialutgåva som innehåller allmän info,fakta och forskningsrapporter baserade på Digital Holografisk Mikroskopering. Den kom ut i fredags 19/5 och finns idag tillgänglig på nätet.

                        Special Issue: Quantitative Phase Imaging for Label-Free Cytometry 

Man gör ett undantag och viker hela upplagan åt att berätta om denna "nya spännande teknik".
Innehållsförteckning hittar man här.

I utgåvan florerar namn vi PHI,are är bekanta med.
Ed Luther, Vladimir Torchilin, Birgit Janicke, Kersti Alm mfl..
Även Björn Kemper jag skrivit om tidigare.
Och.. "trumvirvel"..Peter Egelberg hittar vi även där.
Det lär väcka förvåning och uppmärksamhet för alla Cytometriare världen över, att deras "husorgan" valt att avvika från gängse rutiner att ha aktuell info och artiklar som annars täcker hela spektrat inom Cytometrin.
Men nu som sagt gör man ett undantag.
Redan i inledningen skriver redaktionsledningen, där för övrigt Elena Holden gästspelar, anledningen till denna avvikelse.

Introduction

In order to understand complex biological processes, scientists must gain insights into the functioning of individual live cells. Unlike fixed cell imaging, where a single snapshot of the cell's life is retrieved, live-cell imaging allows investigation of the dynamic processes underlying the cell's function. Label-free imaging avoids the limitations inherent to fluorescent probes (phototoxicity, photobleaching) and maintains an appropriate environment for normal cellular behavior.

This special issue is focused on introducing to our readership the subject of Quantitative Phase Imaging (QPI) and its benefits to cytometry. QPI is a valuable method for studying live cell dynamics, as it provides a noninvasive analysis over a wide range of time scales. This type of analysis is gaining traction very rapidly because it is performed with little to no phototoxicity and requires minimal sample preparation. There are no effects of biological and chemical labels or genetic modification, which would alter cellular behavior. QPI offers the benefit of repeated observations and quantitative analysis of cell cultures over time providing minute-by-minute insight into cell proliferation, cell death, and transient events. Quantitative measurements are based on direct phase image analysis of cell structure. QPI yields optical path difference maps associated with the specimen of interest and, as such, it is sensitive to both local thickness and the refractive index of the sample. Several QPI related publications have previously appeared in Cytometry Part A, paving the way for this new field of applications. A collection of manuscripts in this special issue attests to the fact that QPI is becoming a prominent technique complementary to traditional cytometry technologies and indispensable in dynamic label-free live-cell analysis applications.

Och som slutkläm skriver man:
We hope you will find the articles published in this special volume thought provoking. QPI field spans a broad area of interests and biological applications. It is a relatively new member of the cytometry instrumentation techniques and developing very rapidly. Multiple, commercially available QPI systems are now available.
We anticipate that the subjects of performance metrics (sensitivity, specificity, reproducibility, and reliability of QPI measurements) will be addressed in systematic ways compliant with the principles of cytometry, especially in applications proposed for clinical use.  
A pressing need has already emerged in developing optimal analysis strategies and intelligent machine learning algorithms of large multi-dimensional data sets.
Finally, we wish to thank the dedicated scientists and technology developers for their contributions to the QPI field and making this special issue possible.

Bland de artiklar man har med i utgåvan finns PHI,s senaste forskningsrapport :

Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy


 Figure 1. (A) Technical principle of digital holography as used in the HoloMonitor M4. A low-power laser beam is split into two, one illuminating the sample and the other providing a reference beam. Once combined, the two beams create an interference pattern which is recorded by a digital image sensor. The recorded interference pattern—the hologram—is then processed computationally to produce a quantitative phase shift image. (B) HoloMonitor M4 inside a cell incubator. The motorized stage allows time-lapse image sequences in multiple wells to be acquired automatically. (C) DHM images showing L929, Jimt-1, and SK-MEL-5 cells after 36 h of etoposide treatment. The cells are color-coded to more clearly visualize cell thickness as shown with the color bar. Images are representative of three independent experiments with 10–12 images per sample.

Min kommentar
Denna specialutgåva talar nästan för sig själv. 
Betydelsen för DHM i allmänhet och PHI i synnerhet...kan den bli större?
ALLA inom Cytrometrin (forskare,tillverkare,återförsäljare mfl..) kommer ta del av den.
Magiskt.
                                        

4 kommentarer:

  1. Tack för allt grävjobb du delar med dig av. PHI är den bästa investringen för både plånboken och mänskligheten. Att kunna göra världen till en bättre plats och samtidigt tjäna en slant på kuppen är helt suveränt! Det börjar hetta till rejält kring PHI!

    SvaraRadera
  2. Du sätter press på Big Pharma genom din pedagogik samt enorma drivkraft, The99 är här för att stanna... i min browser. ( även efter phexit )

    SvaraRadera
  3. Du är kung. Känns som det blir uppköp redan iår. Stort tack för all information du delger oss med

    SvaraRadera