Melanoma, the most dangerous form of skin cancer, is increasing. In the US, melanoma is one of the most common cancers among young adults. However, if the disease is caught early, then it can be cured. A research team, led by Dr Robert Judson-Torres, is tracking single cells when studying melanoma at an early stage. “Ultimately cancer is a disease where rare single cells start doing something we don’t want them to do. We want to find these very rare single cells.”
Find out how Dr Robert Judson-Torres and his research team work with single cell analysis when finding skin cancer at an early stage.
Robert Judson-Torres, Principal Investigator and a Sandler Fellow at the Department of Dermatology at UCSF, Helen Diller Family Comprehensive Cancer Center, leads a research group with the interest to understand human melanoma and its progression in vitro, and to drive development in prevention, diagnosis and treatment.
Dr Robert Judson-Torres, Principal Investigator at the Department of Dermatology at UCSF, Helen Diller Family Comprehensive Cancer Center |
Many studies in the field of melanoma focus on cell lines derived from patients that already have advanced disease. These cells are not representative of the early stages of the disease.
“We had to establish a model using the cell type from which melanoma is derived, so we are using human melanocytes. Then we used CRISPR to introduce the mutations most commonly associated with melanoma in order to engineer the early stages of the disease.”
The research team receives skin removed in surgeries; this gives only a few cells to work with. Dr Judson-Torres explains that they don’t work with cells that have been kept in culture for a long time; they want to keep everything as close as possible to the cell type pulled out from the skin.
When putting human melanocytes on glass or plastic, the morphology is complex and beautiful, but after a few weeks in the lab the complexity is gone, Dr. Judson-Torres says.
How is HoloMonitor helping you?
“We are able to visualize the primary cells we derive from the skin immediately without labeling the cells and without undergoing any selection process. We can also watch the cells without disturbing them. We can see which behaviors and morphologies are dynamic. We are able to get a lot of information out of these very few cells in the limited time we have to work with them. I’m not aware of any other equipment that would allow that.”
We are able to get a lot of information out of these very few cells in the limited time we have to work with them. I’m not aware of any other equipment that would allow that.
Engineering melanoma brick by brick
When studying melanoma cells from a patient there is a bias problem as only the cells that successfully became melanoma are studied, and if a cell line is being analyzed, the cells that successfully grow and behave well in vitro are studied.
There is a risk of missing what happens to all other cells – many of which harbor the exact same genetic mutations. The research group’s goal is to understand human melanoma by engineering the progression in vitro, piece-by-piece, and to drive discoveries in prevention, diagnostics, and treatment.
With help from clinical data, a team of melanoma research groups at UCSF have traced genetic mutations during each stage of melanoma progression. From this, Robert Judson-Torres’s group went back to primary melanocytes and added similar mutations at different times to analyze cell behavior, molecular changes, and determined which cells do progress.
“One of the very fundamental questions we started with was: If you have 1,000 identical melanocyte cells and each one receives exactly the same oncogenetic mutation, does every cell transform or does only a small percentage of the cells transform, and what happens to the rest of them?”
Using HoloMonitor M4 to track individual cells among the primary melanocytes pulled out from patients, Dr Judson-Torres’s research group was able to characterize not only how different the melanocytes are but also if they belong to distinct groups with similar characteristics.
When looking at the percentage of cells that do transform, the research team then introduces other conditions or environmental stimuli, like small molecules, to see if the rate then increases or decreases.
“If other conditions or compounds influence the probability of transformation, it would not be just early diagnosis we might be able to help with, but also prevention.”
Publications based on HoloMonitor data
In your publication Quantification of Mammalian Tumor Cell State Plasticity with Digital Holographic Cytometry you were using HoloMonitor when looking at cell behavior.
“We are interested in looking at the point in tumor progression where cancer cells begin to metastasize. There is a concept called cell state plasticity, which is basically a term for a cell losing enough of its regulation. If the cell’s plasticity has increased, you have a cell that will more easily overcome selective pressures.
This is very difficult to study. We wanted to visualize cells, monitor their different behaviors and morphologies to determine the of fluctuation between these characteristics.
With HoloMonitor M4 we could study how individual cells behaved and we could perform time lapse studies. HoloMonitor allow us to conduct these experiments investigating cell state kinetics; it allows us to monitor plasticity with single cell resolution.”
In your publication Evaluation of Holographic Imaging Cytometer HoloMonitor M4 Motility Applications you have compared two methods to measure cell motility.
“We used HoloMonitor M4 digital holographic cytometry method with the software package Track Cells module, and Wound Healing Assay, and compared it with transwell migration and invasion assays.
The relative cell motilities were well correlated, and the HoloMonitor M4 yielded reproducible results that well-correlated with standard assays.
Importantly, with the M4, we could conduct the experiments using just a few human melanoma cells in standard culture conditions.”
What do you think about HoloMonitor’s future?
“It is a strong tool for routine assays and tissues, and provides higher level analyses with single cell tracking.
We gain a more complete appreciation of how heterogeneous primary cell cultures are, and how much information we lose by using population averages.
I believe on of the unique strengths that HoloMonitor will provide in the future is the ability to observe very rare cell states and cell state transitions in heterogeneous populations.”
Min kommentar
Hudcancer intresserar mig lite extra av naturliga skäl då jag själv diagnosticerades med det för ca 1,5 år sen.
I mitt fall sas det att jag hade en basalcellscancer vilken opererades bort, basaliom är den vanligaste formen av malign hudcancer och risken för metastaser är liten säger forskarna.
Hursom, den som opererat bort en hudcancer bör vara uppmärksam på senare förändringar i huden.
Det är vanligt att man efter ca 5 år kan få "kompisar" till det tidigare bortopererade basaliomet så noggrann koll på skinnet anbefalles. Bilden nedan visar en ytlig basalcellcancer. Den aggresiva typen väljer jag att inte visa.
Om någon av bloggens läsare känner igen detta märke på sin kropp bör man boka tid hos sin husläkare och göra en check. Ju tidigare osv.....
Men tillbaka till Robert Judsons forskning. Robert framstår som en kommande auktoritet inom hudcancerforskningen genom hans, redan nu så tidigt i forskarkarriären, upptäckter.
Ett bra exempel på det fick vi i Augusti 2018. Läs inlägget.Vill man läsa mer om hans forskning kan man använda sökrutan till höger. (Judson och sen enterknappen)
I detta PM får vi bra information om exempel på Roberts forskning.
Han berättar att traditionell hudcancerforskning tar sin bas i redan utvecklad cancer vilket inte ger de rätta svaren om man vill veta en så tidigt eventuell uppkomst som möjligt.Alltså vad sker innan vissa celler börjar okontrollerad delning mot en ev tumör.
Människan har 3 hudlager. Dessa är överhud (Epidermis), läderhud (Dermis) och underhud(Subcutis/fatty tissue). Wiki visar.
Genomskärning av huden. Överhuden är märkt epidermis. Notera den vågformade övergången till dermis. |
En aggresiv hudcancer, Malignt melanom, startar i skiktet mellan överhud och läderhud. Det området innehåller celler som i sin tur innehåller färgämne dvs pigment som gör oss färggladare när vi solar. Dessa celler kallas melanocyter. För att kunna följa dessa celler,vilka som avviker från normalt beteende, var Robert tvungen att använda sig av CRISPR metoden (Clustered Regularly Interspaced Short Palindromic Repeats).
CRISPR upptäcktes för övrigt av Svenska forskare vid Umeå Universitet så sent som 2012 och har framgångsrikt använts därefter när forskare behöver gå ner på DNA-nivå för att kika in i cellkärnor.
Med denna metodik applicerade Robert kända mutationer (cellförändringar) från bekräftad hudcancer i syfte att följa vidare utveckling och därigenom få svar på hur tidigt cellförändringarna övergår till att bli "farliga".
Han berättar att med traditionell mikroskopteknik med infärgning av cellerna försvinner möjligheten att följa dessa innan full utveckling skett, och därigenom de svar man är ute efter.
Men, med tekniken HoloMonitor medger får han mer information än någon annan känd teknik kan ge.
"We are able to get a lot of information out of these very few cells in the limited time we have to work with them. I’m not aware of any other equipment that would allow that.”
"Using HoloMonitor M4 to track individual cells among the primary melanocytes pulled out from patients, Dr Judson-Torres’s research group was able to characterize not only how different the melanocytes are but also if they belong to distinct groups with similar characteristics. When looking at the percentage of cells that do transform, the research team then introduces other conditions or environmental stimuli, like small molecules, to see if the rate then increases or decreases."
“If other conditions or compounds influence the probability of transformation, it would not be just early diagnosis we might be able to help with, but also prevention.”
Här berättar Robert att med HoloMonitor kan han urskilja de melanocyter som är avvikande och på tidigt stadium på väg mot mutation, att han då modifierar den omgivande miljön för dessa med olika medel för att se hur de svarar.
Hypotesen är att om man hittar "rätt" medel/förutsättning till att först se vart det är på väg, tumörbildning, så kan man på riktigt tidigt stadium sätta in adekvat behandling.
Sen är tesen att man även kommer att kunna förebygga risk för kommande hudcancer med dessa upptäckter.
Bloggens åsikt: Ge Robert tid att forska vidare med PHI´s teknik. Han kan vara på väg mot stora upptäckter, stor uppmärksamhet, auktoritet inom området. När det väl sker kommer PHI´s teknik lyftas fram som instrumentet som möjligjorde forskning på allra högsta nivå.
Dess användbarhet i den mer avancerade forskningen men även i det dagliga. High tech - Low tech - Every tech
Robert avslutar med att säga: "HoloMonitor är att kraftfullt verktyg för den rutinmässiga basforskningen, men även för mer avancerad forskning framförallt inom singelcells analys".
Singelcellsforskning som även Sofia Kamlund et al i bland annat sin doktorsavhandling lyfte fram som en av de viktigare teknikerna i framtida forskning på riktigt hög nivå.
Avslutningsvis. Denna artikel är förmodligen mer riktad till Roberts forskarkollegor runtom i världen än till oss lekmän. Men den ger oss en insikt i hur bra han anser tekniken vara och den vibbar starkt hur vi aktieägare ska förstå vad det är för värdepapper vi sitter på.Ett GULD-ägg.
Mvh the99
Inga kommentarer:
Skicka en kommentar