onsdag 15 maj 2019

Fler puzzelbitar

Bloggen gillar att lägga pussel som förmodligen framkommit tydligt. Så med anledning av förra inlägget om pusselläggande kommer här några bitar till.Dessa tillhör samma pussel och ska läggas i mitten av pusslet så helheten blir lättare att skåda. (var ett j-a tjat om pussel...😎)
Nåväl,undertecknad har grävt fram material som berör HoloMonitor kontra kliniskt användande.
En tillbakablick på vad forskare tror om framtiden. Fetningar i texten är mina egna.

Först en publikation från 2017. Författarna bör ni känna igen.
 Zahra El-Schich, Sofia Kamlund, Birgit Janicke,Kersti Alm and Anette Gjörloff Wingren
Digital holographic (DH) microscopy is a digital high-resolution holographic imaging technique with the capacity of quantification of cellular conditions without any staining or labeling of cells.

The technique is cell friendly, fast and simple to use and has unique imaging capabilities for time-lapse investigations on both the single cell and the cell-population levels. The interest for analyzing specifically cell volume changes with DH microscopy, resulting from cytotoxic treatments, drug response, or apoptosis events has recently increased in popularity.

We and others have used DH microscopy showing that the technique has the sensitivity to distinguish between different cells and treatments. Recently, DH microscopy has been used for cellular diagnosis in the clinic, providing support for using the concept of DH, e.g., screening of malaria infection of red blood cells (RBC), cervix cancer screening, and sperm quality.
Because of its quick and label-free sample handling, DH microscopy will be an important tool in the future for personalized medicine investigations, determining the optimal therapeutic concentration for both different cancer types and individual treatments.

Clinical applications
Lately, DH microscopy is being developed for clinical applications in widely different areas of medicine such as transmembrane water flux, cancer screening, sperm motility, blood cell analysis, and inflammation.
Recently, Benzerdjeb et al. reported a preliminary study with DH microscopy as a screening tool for cervical cancer
The study is based on materials from three randomly chosen laboratories, which was analyzed and subjected to DH microscopy. The sensitivity and specificity of DH microscopy was calculated for the detection of neoplasia. The results demonstrated for the first time that the DH microscopy technique is suitable for the processing of gynecologic cervical samples.

En publikation från 2018. 
     Zahra El-Schich Anna Leida Mölder and Anette Gjörloff Wingren
Quantitative phase imaging (QPI) is an ideal method for studying live cell dynamics by providing data from noninvasive monitoring over arbitrary time scales. The effect of drugs on migration, proliferation, and apoptosis of cancer cells are emerging fields suitable for QPI analysis
In this review, we provide a current insight into QPI applied to cancer research.
Pavillon et al. showed that dead cells could be identified within minutes through their DH phase signal, whereas with conventional trypan blue staining the identification took several hours
Also, DH microscopy was compared with electronic cell sizing and atomic force microscopy. 
DH was shown to be advantageous in terms of the noninvasive labeling, the time resolution, and the possibility of measuring both single cells and cell populations. 
Moreover, in a study by El-Schich et al., DH measurements revealed significant differences in the average cell number, the confluence, cell volume, and cell area when comparing untreated and etoposide-treated cells.

There is a demand for tools to classify cells, and to determine cell morphology, differentiation, proliferation, morphological changes of cells transfected with DNA or siRNA, cell death, and effects on cell movement—all in a high-throughput manner. Since QPI is performed on live cells without any labeling, the cells can be investigated with other methods—or the cells can be cultured for longer periods after the analysis. However, extensive image analysis is required due to the richness of information in each image. 
Analyzing blood samples or tumor biopsies containing small subpopulations of drug-resistant cancer cells is also emerging with the increased need for individualized treatment.

Recent advances in image analysis and machine learning classification algorithms applied to various types of medical imaging have only just started to be applied to QPI.
A typical approach for automated analysis consists of two major steps: The extraction of features from images, and the classification of cells into groups on the basis of the features.
Studies have shown the ability of QPI to distinguish between cancer cell types in blood using relatively few basic features such as maximum and average intensity, and cell diameter.
However, the majority of studies use more features. The inline-DH microscopy method used by Singh et al. to achieve large-scale fingerprinting capabilities was useful for characterizing circulating tumor cells (CTC) in bulk flow.
The authors were able to characterize tumor cell lines with different metastatic potential, and to distinguish drug resistant tumor cells from their normal counterparts.
Simple and fast methods are needed urgently because morphology and functionality can differ quickly over time in a blood sample.

QPI applications including cell counting, migration, and morphology assays have become increasingly popular, but several challenges still persist. The morphological label-free analysis ability of QPI is a fast, automatic, and cost-efficient evaluation tool for analyzing quantitative parameters, including cell area, thickness, volume, population confluence, and cell count.  
The need for QPI applications in clinical cancer diagnostics and treatments is emerging.


En publikation från 2016
Digital Holography and Cell Studies
Kersti Alm, Helena Cirenajwis, Lennart Gisselsson, Anette Gjörloff Wingren, Birgit Janicke, Anna Mölder, Stina Oredsson, Johan Persson

      Digital holographic microscopy (DHM) is a novel high-resolution imaging technique that offers
real    real-time imaging and quantitative measurements of physiological parameters. 

It    It has developed into a broad field, and one of many interesting applications is to study cells
      without staining or labeling them and without affecting them in any way.
Digital holography makes it possible to easily measure cell properties  that previously have been very difficult to study in living cells, such as cell thickness, volume, and cell refractive index.
Living, dying or dead cells as well as fixed cells can be studied.

Erythrocytes are among the most common cell types in the body. They travel throughout the blood system to deliver oxygen to even the most remote parts of the body. In order to carry out this function, erythrocytes are robust, dense, elastic and concavely disc-shaped.  
Erythrocyte shape and volume can be used for clinical diagnosis purposes and tests for the erythrocyte sedimentation rate are common.
Modern medical cell analysis equipment uses flow cytometry technology to determine cell volume and shape. 
The results are mostly good, although the equipment is expensive  and requires expert handling
The very distinct and clear shape of erythrocytes make them well suited for DHM studies.
The low optical density of the cell center is clearly seen. Rappaz and colleagues monitored erythrocytes using DHM and compared the results with confocal laser scanning  microscopy and an impedance volume analyzer with good results (Rappaz et al., 2008). They managed to accurately measure cell volume, surface area, diameter, refractive index and hemoglobin  content, all by capturing single DHM images of the cells.

Taking it one step further, DHM can be used for tomographic measurements (Massatsch et al.,  2005) that enable analysis of sub-cellular motion from deep within living tissues (Jeong  et al., 2007a), along with valuable 3-D-reconstruction of the object (volumetricvisualization) (Jeong  et  al., 2007b). 
Sun and colleagues showed that they could follow the movement of  blood cells in vivo in a tadpole blood vessel (Sun et al., 2008).
This shows that DHM can be a useful tool for in vivo studies, enabling researchers to directly follow the effect of a treatment on e.g. cell  morphology or motility and migration.
DHM has also been used for  studies on spheroids (Yu et al., 2003; Jeong et al., 2007b).
Spheroids are clusters of cells that serve as in vitro tumor models which can be used for e.g. studies of novel anti cancer drugs.

Är då framtiden redan här,nära eller långt bort? Här svarar 3 kända HoloMonitor-användare future & near future.

Först ut är Professor Anette Gjörloff Wingren i en intervju 2018-07-10

- In the future, clinics could be using HoloMonitor to see and learn how different cancer cells behave and react to different cancer treatments
You can get beautiful images and recordings of the cells morphological behavior, combined with important quantitative data such as volume, thickness and area. I also think it’s possible to use HoloMonitor in other cell research areas such as autoimmune diseases and other diseases where cells change and need treatment.

Från GlycoImaging projektet säger forskaren Louise Sternbæk:

In what way does HoloMonitor M4 help you in your research?
“HoloMonitor helps me with the essential information. I can see in what way cancer cells react to toxic substances; I can see how fast the cells react to the toxic substances and track how the MIPs find the cancer cells. It’s really great! The ability to visualize cell divisions, migration and the cells morphological behavior is also of great value.”

 - In the near future we’ll be able to predict which medicine that will work best for each patient’s cancer
Cancer is personal disease; all cancers are different. 
Today, when two patients receive the same diagnose they are treated in the same way. 
It will become possible to find out which cancer treatment to use for a specific person’s cancer. 
This approach has the potential to become very rapid, efficient and would save a lot of money in cancer care and cancer treatment.



 Och slutligen Dr Zahra El-Schich från en intervju 2018-09-14

- In the near future, you could have a HoloMonitor in every clinic
Imagine using time-lapse recordings on tumor samples from patients
You could also customize cancer treatment for every patient by just using a simple tumor test
Then you could test different cancer treatments on the tumor sample, which concentration to use for instance, and see which treatment fits which patient. 
All patients are different. One patient might only need the lowest dose of chemo therapy, and another patient will need to have the highest dose, and for some patients the highest dose isn’t enough. 
Instead of testing on the patients live, treatments could be tested on the tumor sample. 
This would give every patient better cancer treatment and a better chance of being declared healthy, and also reduce risks like resistance to treatment.
We are all genetically different, and cancer heritage from different factors. 
Breast cancer for instance can be caused by hormones or genetical factors; therefore two people with the same diagnosis, like breast cancer, need different treatments
A sample can show which protein the cancer cells are carrying and help to choose treatment
Since we are different – why should we have the same cancer treatment?


Bloggen funderar sen på om nedanstående 3 appar är tillämpbara om behandlande klinik utgår med biopsi tagen från inskriven cancerpatient.Samtliga går under rubriken Drug Response...men ändå..

Dose Response

In research, especially early drug development, kinetic information on the response of living cells to various doses or concentration of a chemical substance is vital. From dose-response curves both risks, and potential effects, of the substance may be estimated.

Easily get Kinetic Dose Response Data 

The HoloMonitor® Dose Response Assay is designed for automated and detailed analysis of drug responses in adherent cells. It is easy to set up using the App Suite software, offering automatic result presentation. Compared to traditional methods for dose-response studies the assay adds one key factor, i.e. kinetics.

Growth Responses

Growth Inhibition as a Response to Cytotoxicity

Cytotoxicity assays are widely used in fundamental research and in drug discovery to screen libraries for toxic compounds. Cytotoxic effects may include cell death, by inducing necrosis or apoptosis, or growth inhibition, stopping cells from actively growing and dividing. As a result, cell proliferation is decreases. Cell counting, confluence and morphology are useful parameters for toxicity analysis.

Cell Death Kinetics

The Process of Cell Death

Cell toxicity, or cytotoxicity, is defined as the ability of certain substances or mediator cells to destroy living cells. Exposure of cells to a cytotoxic compound is ultimately lethal and induces either necrosis, during which the cells lose membrane integrity and die rapidly, or apoptosis (programmed cell death). Cell death, in terms of cell viability, is thus a common end point in toxicological studies. However, cells usually undergo morphological changes before the actual cell death occurs. Healthy cells are often irregular and rather thin, dying cells are small, less irregular and thick, while dead cells are round and thin. Analyzing these features thus enables detailed understanding of the cell death process, both for individual cells and cell populations. 


Min kommentar
Detta var några exempel jag snabbt hittade som berättar om framtida användande av HoloMonitor vid klinik och som instrument vid individuellt anpassad cancerbehandling, "skräddarsy insats till enskild patient".
Artiklarna är från 2016 till 2018 ska noteras. Intervjuerna från 2018.
I föregående inlägg beskrev undertecknad hur viktigt det är med närhet till patient om avsikten är att tillämpa immunterapi.Hur viktigt det är att behandlande aktör har tillgång till instrument som är lättanvänt som att det även ger snabba svar.I artiklarna ovan är just de 2 egenskaperna väl beskrivna beträffande HoloMonitor.
Addera sen de nya apparna så putsas egenskaperna till ytterligare.
Immunterapi den behandlingsform många aktörer ser som den (kommande) viktigaste och mest framgångsrika för cancerpatienter. Läs det inlägget igen efter du läst detta.
Kan man anta att det finns en koppling mellan det börsnoterade företaget X och deras snabba resultat av utvärderingen + PHI´s beslut att etablera sig i USA + Immunterapins nära förestående genombrott?
Bloggen har inte svar på den frågan ska sägas på en gång. Men som spekulation kittlar det ganska rejält.
Undertecknad hoppas att alla läsare är medvetna om att vi troligtvis kommer få ett PM inom närtid som berättar mer om det miljardstora företaget X och vad det resulterar i för PHI.

Det baserat på att PHI redan för 2 veckor sen berättade:
- Ett gemensamt seminarium gjorde nyligen klart hur utomordentligt väl företagens produkter kompletterar varandra.
Tillsammans erbjuder respektive produkt­linjer en komplett lösning för att både aktivera immunceller och för att studera effekten av aktiveringen genom att kvantifiera immun­cellernas förmåga att attackera och oskadliggöra tumörceller. 

De lovande utvärderingsresultaten kommer att ligga till grund för de fortsatta diskussionerna och den framtida relationen mellan bolagen.

Det är m.a.o dax att ta fram det stora spekulationskompendiet vad det kommer innebära.
Undertecknad har redan fått mejl med scenarion och vad jag tror om dessa.
Istället för att svara enskilt vore det roligare (för alla läsare) om fler spekulationssugna gärna mejlade (rutan till vänster Kontakta mig) eller använder kommentarsfunktionen så sammanställer jag alla spekar och ger egen syn på dessa i enskilt inlägg. Jag maskar naturligtvis avsändare och mejladresser.
Hit me with some spekkk !

                                                                     Mvh the99

2 kommentarer:

  1. Tack för all information och dina idéer.
    Kan bara bli sjukt bra det här.

    SvaraRadera
  2. Vassego.
    Jo,jag har ju fastnat lite för det här med skräddarsydda insatser där HoloMonitor passar så bra in.
    Immunonkologi ser ju ut att få sitt genombrott i år där företaget X förmodligen har planer att satsa ganska rejält tidigt för att bli en av de ledande aktörerna.
    Ett börsnoterat företag brukar ligga i framkant när dess marknad förändras.
    Är det noterat i USA förväntar sig aktieägarna att de ska vara med när startskottet går.Eftersom det är beskrivit som miljardomsättningsstort lär de ha stabila större ägare med höga krav.
    Och snart kommer vi få info om vilket företag det är och hur/om PHI passar in i deras planer.
    Spännande tider väntar.
    Mvh the99

    SvaraRadera