Denna blogg kommer fokusera på ett begränsat urval av noterade bolag jag själv finner intressanta.
Tanken är att på bloggen visa de senaste nyheterna samt mina egna kommentarer till dessa. Men även publicera bolagsrelaterat material som man kanske inte annars hittar via de traditionella kanalerna.
onsdag 3 augusti 2022
Ny DHM-studie
"Vår" cancerforskare Robert L. Judson-Torres m kollegor har genomfört en gedigen studie om Digital Holografisk Mikroskopi (DHM). Man går igenom tekniken och berättar om alla dess fördelar och användningsområden. Studien är en bra genomgång om hur tekniken utvecklats från enklare funktioner till att idag klara alltmer avancerade observationer.Man lyfter de ev tillkortakommanden som fortfarande finns till att bli ett "standardinstrument" för den breda forskningen. Där kommer man även med svar på hur lösa det, riktade till instrumenttillverkarna. En kul detalj är att Robert tar upp utvecklingen från tidig upptäckt om förlagan till DHM som då gav upphovsmännen ett Nobelpris. Som många av er vet har bloggen ett gott öga till Robert och ser honom som en kommande Nobelpristagare med sin nydanande forskning inom hudcancer.
Denna studie tillsammans med vår andre HoloMonitorfrälstes , den ungerskfödde forskaren Robert Horvath, studie som publicerades i Nature alldeles nyligen är guld värt för att möjliggöra att tekniken ska få sitt breda genombrott. HoloMonitor i Nature.
Dessa 2 Robertar drar onekligen en lans för tekniken i allmänhet och för HoloMonitor i synnerhet.
Ägna gärna en stund åt att läsa igenom den nu aktuella studien som publicerades igår 2 Augusti.
Quantitative
phase imaging (QPI) is a label-free, wide-field microscopy approach
with significant opportunities for biomedical applications. QPI uses the
natural phase shift of light as it passes through a transparent object,
such as a mammalian cell, to quantify biomass distribution and spatial
and temporal changes in biomass. Reported in cell studies more than 60
years ago, ongoing advances in QPI hardware and software are leading to
numerous applications in biology, with a dramatic expansion in utility
over the past two decades. Today, investigations of cell size,
morphology, behavior, cellular viscoelasticity, drug efficacy, biomass
accumulation and turnover, and transport mechanics are supporting
studies of development, physiology, neural activity, cancer, and
additional physiological processes and diseases. Here, we review the
field of QPI in biology starting with underlying principles, followed by
a discussion of technical approaches currently available or being
developed, and end with an examination of the breadth of applications in
use or under development. We comment on strengths and shortcomings for
the deployment of QPI in key biomedical contexts and conclude with
emerging challenges and opportunities based on combining QPI with other
methodologies that expand the scope and utility of QPI even further.
Digital Holography
Digital holography directly descends from interferometry and also captures the interference between a reference and sample beam.
However, unlike interferometry, digital holography does not typically
require mechanical scanning of the resulting interference fringes. In
digital holography, the interferogram is captured with a digital camera
placed at a known distance in front of the image plane. This interferogram is analyzed using diffraction theory to reconstruct
the complex object wavefront, including the phase shift and intensity
modulation of light passing through the sample. Digital holography
emerged from the establishment of holography by Gabor for which he won the Nobel prize in 1971. Gabor’s work demonstrated that light from a point source interfering
with secondary waves from light scattered by an object produces a
negative photograph of a three-dimensional (3D) image. However, a
conjugate image is also superimposed on the reconstructed image,
resulting in ambiguity due to the presence of this twin image. It was
later shown that use of an off-axis reference beam can separate the real
and conjugate image. Marine plankton provided an early application of live cells imaged
using holography in a chamber with close proximity to a photographic
plate.
I nedanstående stycke klipper jag in områden Robert L Judson-Torres identifierar som högst användbara för tekniken. Ni får läsa resp rubriks innehåll själva.
Advances in Quantitative Biology
As QPI approaches have advanced, so too have QPI applications. One
advantage of QPI is that it is label-free. Therefore, QPI can study cell
behavior with minimal impact, a leveraged feature in a number of
biological applications. As summarized above, there are also a number of
additional label-free microscopy approaches, including the more widely
used methods of phase contrast and DIC microscopy. The primary advantage
of QPI over these other approaches, however, is that, in contrast to
phase contrast or DIC microscopy, the data contained in each pixel of a
QPI image are a quantitative measure of the phase delay of light as it
passes through that portion of a sample. Measurement of this phase delay
can utilize any of the approaches already discussed above. Once
captured, analysis of this phase data can provide quantitative insights
into numerous biological processes and systems. Here we summarize key
advances in the application of QPI to quantitative studies in biology,
ranging from applications that quantify the behavior of individual cells
to emerging opportunities in clinical diagnostics
QPI Applications Using Measurements of Cell Mass or Growth Rate
Applications of QPI to Studies of Cell Growth and Associated Biological Processes
Applications of QPI to Studies of Immune Cell Behavior
Applications of QPI to Measure Neuron Behavior
Applications of QPI in Measuring the Physical Structure of a Cell
Applications of QPI in Studies of Intracellular Transport
Applications of QPI to Cell Migration Assays
Applications of QPI for Measuring Biophysical Cell Properties
QPI Applications in Screening and Drug Sensitivity Measuremen
QPI Morphological Applications in Diagnostics
Conclusions and Perspective
QPI is
an approach with a long history. However, the last two decades have
seen great leaps in both the abilities and applications of QPI. The
rapid recent development of QPI is from impressive advances in image
processing capabilities enabled by digitalization and increasing
computational power .
This development and application of computational tools has
substantially increased the utility and power of QPI in its application
to biomedicine and permitted the development and commercialization of
prebuilt and user-friendly QPI platforms. Consequently, recent years
have witnessed a surging interest in QPI, coupled to a dramatic increase
in QPI enabled publications and discoveries.
This marked expansion of QPI applications is also being fueled by
leveraging machine learning approaches and is increasingly impacting
areas that are beginning to include disease diagnoses and measurements
of biological state transitions. While exciting, this recent and rapid
adoption of QPI platforms and associated published studies has also
highlighted the dearth of standardization tools and practices beyond the
adaptation of polystyrene beads
as phase standards. Developing and circulating such tools will be
critical for reproducible studies and validation of future QPI-based
diagnostics and other applications.
Current
areas of QPI utility include studies of cell size and its regulation,
cellular diagnostics and screens, and biomechanics and biophysics. One
key strength of QPI approaches includes label-free classification of key
cellular behaviors such as programmed cell death pathways,
differentiation, cell cycle progression, and immunological responses.
Assessing these behaviors in the context of changes in biomass density,
morphology, transport, and viscoelastic properties provides a deeper
understanding of adaptations during cell or organismal life. A second
key strength is the ability to study single cells or individual cell
clusters over long periods of time.
As techniques in single cell
profiling continue development resulting in increasing reports on
molecularly distinct subpopulations of cells, QPI provides a platform
for assessing distinct phenotypes and behaviors within these
heterogeneous populations. Further development of multimodal approaches
will be critical for merging the observations made using single cell
molecular profiling with QPI single cell phenotyping.
Finally,
although there have been a large number of studies pointing toward
clinical utility of QPI, this approach is ready for more robust
validation and testing with clinical samples. As a label-free approach
that can quantify multiple physiologically relevant parameters
describing the behavior of living cells, QPI is well positioned to work
with clinical samples.
QPI therefore has the potential to enable a wide
range of clinical applications in functional and diagnostic medicine,
both as an addition to current approaches that rely on staining and as
an independent ex vivo approach. Further work is therefore needed
to build on the demonstrated capabilities of QPI to translate this
technology to clinical utility and ultimately to improve the standard of
patient care.
Min kommentar
Med denna imponerande studie har Robert L. Judson-Torres m kollegor banat väg för tekniken att nå fler,många fler användare inom en massa forskningsområden som inbegriper rubrikerna ovan.
Robert nämner PHI och HoloMonitor i texten (som sig bör).
Nu håller vi tummarna att studien sprids brett till (den ack så konservativa) forskarvärlden.
Tillägg 4/8
Studien har nu lagts upp i ett mer exklusivt format. Länk (PDF)
Mvh the99
Bonus
Mexikansk (!) doktorsavhandling om hudcancer som enbart bygger på DHM.
"Se implementó un sistema de DHM para la medición del índice de
refracción y espesor en una muestra deshidratada de la línea celular de
melanoma A375, acompañado de un novedoso modelo matemático para
desacoplar estas variables. Adicionalmente, se configuró un sistema de
DHM para obtener mapas de fase desenvueltos ópticamente. Con este
arreglo, se realizaron mediciones de espesor y longitud en las capas
epidérmicas córnea, espinosa, basal y sus células individuales
correspondientes a muestras de una biopsia con cáncer de piel tipo SCC
de bajo grado."
Doktoranden refererar till studier utförda av Robert L. Judson-Torres och hänvisar till studier utförda med HoloMonitor.
Klicka på PDF längst ner på sidan så kan ni läsa hela studien (på spanska).
Inga kommentarer:
Skicka en kommentar