PHI via Kersti Alm tillsammans med de övriga deltagarna i detta Reg Med projekt har premiärat i att samlas i en belysande text om Smart manufacturing publicerat i det vetenskapliga forat Regenerative Medicine Reports.
I senaste utgåvan som kom nu i veckan berättar företagens repr om vad som krävs för storskalig produktion av stamceller. De går igenom regelverk och utmaningar som finns för att få full acceptans för denna förmodade epokavgörande förmåga att bota jobbiga sjukdomar svåra att behandla idag. Man presenterar sin produktionsteknik som ett alternativ till den idag fragmenterade diton där dagens aktörer kör med sina egna lösningar,förvisso var och en uppfyllande av befintliga regelverk.Men med nackdelen att resp aktör då tar hutlöst betalt och därigenom utesluter den större massan av behövande patienter. Man vill påvisa att det finns en lösning på det och kallar det jämlikhetsaspekten. Med gruppens samlade erfarenheter och kunskaper har de tillsammans åstadkommit en produktionskedja ingen enskild kommersiell aktör är i närheten av. Denna produktionskedja minimerar kostnaden för stamcellstillverkning och ger möjlighet för fler patienter att få tillgång till bot = jämlik vård.
Värt att notera är att förutom repr från PHI,BioSpherix,Wake Forrest,SAS (som man kan läsa mer om i projektet här, här och här) ingår repr från 3 nya företag som medförfattare till texten.
Via professor Kunal Mitra med följande info : Expertise: 3D Bioprinting, Space Based Biomanufacturing, Microfluidic Tissue Chip, Lasers, Non-Invasive Physiological Measurements coupled with AI & ML
Via Isaac Finger-Baker med följande högst intressanta info: Principal Good Development Practices (GDevP) Consultant.Before joining Bridge Informatics, Isaac earned 15 years of development experience in the biotech sector. He has first-hand experience in several categories of biologics development including monoclonal antibodies, therapeutic proteins, vaccines, viruses, and gene therapy. He seamlessly combines his regulatory savvy (having extensive experience communicating with the FDA and other regulatory bodies) with his deep understanding of various manufacturing organisms. This includes their modification, screening & and selection, as well as their suitability for scaled-up production within diverse culture platforms.
Via Andre Terzic med följande info : Andre Terzic, M.D., Ph.D., pioneered regenerative medicine at Mayo Clinic. He has led the development of next-generation regenerative solutions, including first-in-class products for heart repair. He leads team science to discover genes for dilated cardiomyopathy and atrial fibrillation.
Dr. Terzic has written more than 450 publications advancing diagnostic and therapeutic strategies for heart failure. His scientific manuscripts have been cited more than 10,000 times.
De producerar vård i större skala och sysselsätter mer än 3 800 läkare och forskare och 50 900 annan allierad hälsovårdspersonal.Mayokliniken är den första och största integrerade icke-kommersiella medicinska institutionen i världen. Wiki berättar:
Men till projektets inlaga hos Regenerative Medicine Reports :
Smart biomanufacturing for health equity in regenerative medicine therapies
Abstract
Limited scalability and restricted affordability impede the equitable deployment of curative models of care despite advances achieved with regenerative medicine therapeutics. Mitigating the risk of widening health disparities mandates actions that would improve the availability and accessibility of new classes of biotherapeutics. Namely, the use of Smart Manufacturing empowered by artificial intelligence to increase therapeutic production capacity while reducing cost is an emerging strategy central to the future of the regenerative care economy. Establishing an efficient and effective biomanufacturing ecosystem is essential to building regenerative pipelines into broadly available regenerative therapeutics options. This ecosystem must provide not only necessary cell environment controls and computer process power, but also the sensing technologies to feed critical process parameters to the algorithms in real-time. Here we outline key elements that are in development to support Smart Biomanufacturing, such as machine learning, advanced analytics, digital twins, and modular cytocentric production. The aim of integrating these technologies is to drive down costs, improve access to new regenerative medicine therapeutics, address regulatory science expectations, and in doing so, improve health equity.
Utöver det jag berättat om innehållet tar man upp nyckeln som ligger till grund för denna produktionskedja: den digitala tekniken där nu utvecklad AI är det sista "verktyget" för att nå största möjliga säkerhet inom kontroll och kvalitetsfunktioner som ska möta de regulatoriska kraven myndigheter ställer för godkännande och acceptans.
![]() |
Figure 1: Applying Smart manufacturing to regenerative medicine for better health equity.Advancing medical treatments can paradoxically increase health disparities unless access to those treatments is equitable. Improving manufacturing capacity for regenerative medicine, through digital technologies, can help improve access to advanced therapeutics and reduce health disparities. This stylized tree has one half with a few roots and only one fruit. Three people of different sizes are reaching for that fruit, but only one can reach it. The other half of the tree has Regulatory at the trunk and many roots being fed by new technologies: Digital Twins, Machine Learning, Advanced Analytics, and Modular Cytocentric Production. This half of the tree has many fruits, and all three people have access. |
Utdrag :
- Digital holographic microscopy is a non-invasive image-based technology that provides quantifiable cell images. These images provide data on cell parameters such as number, area, volume, and shape that are useful for monitoring cell health, proliferation, and differentiation. New non-invasive methods, like optical coherence tomography, are being developed to assay cell health in 3D cell tissue constructs as well.To establish beyond doubt that the produced cells have all the desired characteristics, DNA expression and functional analyses are necessary.
Cell and tissue culture handling processes, traditionally done in a room air biological safety cabinet, are not performed in a well-controlled environment. In open cleanrooms, critical culture parameters like temperature, pH, and physiologic gas composition cannot be maintained around cells at all times.They also cannot be monitored by sensors during traditional manual cell handling. Cytocentric modular closed systems, designed to protect cells from non-physiologic room air conditions for cell production can include unlimited sensors and controls for environmental cell processing parameters to feed into algorithms.
Using AI to combine environmental data from cytocentric closed cell culture systems and cellular data from in-process monitoring with data from DNA expression analyses and phenotype/functional analyses will allow for faster identification of ideal culturing conditions. Smart Manufacturing will also allow for fast analysis of the state of the production process, predicting production batch success or failure and allowing for real-time adjustment to cell culture conditions.This will help reduce product variability, improving RM product quality and reducing production costs.
Att projektets ursprungliga medlemmar lyckats involvera 3 nya aktörer som var och en bidrar med sin kompetens och stärker projektet än mer är naturligtvis betydelsefullt och ger tyngd i presentationen.
Mvh the99
Låter som att något stort är på gång 👏👏👏 som vi alla väntat
SvaraRaderaVilken bra info!
SvaraRaderaTack för detta inlägg, mycket trevlig läsning!
SvaraRaderaNästa kvartal vänder dom till plus siffror tror jag. Då är det bara att luta sig tillbaka och njuta av uppgången.
SvaraRaderaDDB
SvaraRaderaDanske Bank A/S
150 000
Insider????
SvaraRadera